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Roles vs Communities

Last Lecture: Roles This Lecture: Communities




Network § Communities

We often think of networks “looking”
like this:

What led to such a conceptual picture?
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Network § Communities

Granovetter’s theory leads to the following
conceptual picture of networks

/ Strong ties/edges
/ Weak ties/edges




Network § Communities

Granovetter’s theory
suggests that networks
are composed of
tightly connected

sets of nodes

Network communities: | ;

Sets of nodes with lots of internal connections and
few external ones (to the rest of the network).




Finding Network Communities

How do we automatically
find such densely
connected groups of
nodes?
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Ideally such automatically
detected clusters would
then correspond to real
groups

For example:




Community Detection

Given a network: What arethe “communities™?
Closely connected groups of nodes

Relatively few edges to outside the community
Similar to clustering in datasets

Group together points that are more close or similar to
each otherthan otherpoints



Social Network Data

Zachary’s Karate club network:
Observed social ties & rivalries in a university karate club
During the study, conflicts led the group to split
Split could be explained by a minimum cut in the network
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Intra & Inter Community Links

Intra-community links that connect nodes in the same communituy.
These nodes interact frequently; therefore, these links are known as
strong ties. The nodes that only have links to other nodes in their
community are called core nodes. The core nodes tend to influence
their cohorts in a community more than other network members.

Inter-community links which connect nodes of different
communities. Due to low interactions between such nodes, they are
called weak ties. Nodes that have at least one inter-community link
are called boundary nodes. Such nodes play an important role in
information dissemination over different communities.



Strong and Weak Communities

In a strong community each node of C has more links within the community
than with the rest of the graph, k! (C) > k§**(C'). In a weak community, the

total internal degree of C exceeds its total external degree, k" (C) > k°“*(C).

(a) O

(c)
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Various Fields
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Cybersecurity and Fraud Detection

Networks representing user interactions or system
communications can be monitored for unusual
community behavior that might indicate a security
breach or coordinated attack.

Intrusion Detection: By establishing baseline community
structures in a network, deviations can flag potential
Intrusions.

Fraud Detection: In financial transactions, community
detection can uncover suspicious clusters of activity that
diverge from normative behavior, hinting at fraudulent
networks.



Applications in Social Network Analysis and

Biology

Marketing and Influence Analysis: Brands can target
influential communities within social media networks to
optimize advertising campaigns.

Epidemiological Studies: Understanding how individuals
are grouped can help trace the spread of diseases or
misinformation, supporting public health initiatives.

Gene Regulatory Networks: Identifying communities
within complex gene interaction networks can shed light
on co-expressed gene clusters, aiding in understanding of
genetic conditions.
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Network Communities

Communities: sets of
tightly connected nodes
Define: Modularity Q

A measure of how well

a network is partitioned
Into communities

Given a partitioning of the
network into groups disjoint s € §:

Q < ). .| (#edges within group s) —
(expected # edges within group s) |

Need a null model



Network Communities

= Random networks are supposed without modular structure
= A random network with the same degree distribution

= We may compare the modular structure of the network with
that of a random network (Newman and Girvan 2002)

1 | k. A
) = A —P.)6(C,C A — C.C
. 2m Z( )O( ) 2m ZU: T 2m O( )
m: number of edges
A: adjacency matrix

P: expected number of edges between the nodes in the random
network

The d-function yields one if i and j are in the same community
(G = G), zero otherwise

ki: degree of node i




Null Model Configuration

Given real G on n nodes and m edges,
construct rewired network G’

Same degree distribution but /o: -
uniformly random connections

Consider G’ as a multigraph

The expected number of edges between nodes

ki kik;
i and j of degrees k; and k; equals: k; - — = —

2m 2m




Null Model Configuration (Proof the formula)

Null Model Configuration is a multigraph which means we
can have more than one edge between each pairs of nodes.

Probability that an edge from i connects directly to one

possible side of node j because there are 2m-1 possible
Kj

2m—1

choices (after picking one edge already):

If mislarge,then2m —1 = 2m

k.
Number of "opportunities” of node i: ki.ﬁ

Expected number of successes=number of trials X success probability




Null Model Configuration

* The expected number of edges in (multigraph) G’:

ZmZ‘EN ki (Z]EN k’) = Note:
:—Zm-Zm:m Z/\'“ = 2m

4m UEN

= ZlEN Z]EN 2m



@ What is E[A;;] exactly?

= A, is a random variable:

+ A;; = lif there is an edge between node i and node j,

« A;j = 0ifthereis no edge.
Thus, the expected value £ A;; is:
EA;| =1xPr(d;; =1)+0 = Pr{4;; =0)
Which simplifies to:
FE[A;] =Pr{d,; =1)

So the expected value of A;; is exactly the probability that there is an edge between i and j.

@ Now: Can we say “expected number = number = probability”?
In general, YES:
If you have a number of opportunities and each ocpportunity succeeds independently with some probability,
then:
Expected number of successes = number of trials x success probabhility
But careful!
In this specific case (Configuration Model):
»  We are pairing stubs randomly.
» MNode i has &, stubs,

* Node j has k; stubs.

Each stub from 1 has a chance of connecting to any stub from j.

Thus:
Number of "opportunities" = k; stubs from 1,

Probability that a stub connects to j = .

Therefore, the expected number of connections is:




Modularity

Modularity of partitioning S of graph G:
Qx> ¢| (# edges within group s) —
(expected # edges within group s) |
kik;
Q(G S) ZSES ZlES Z]Es ( _j)

2Zm
— 1) !
Normahzmg const. -1<Q<1 0 otherwise

Modularity values take range [-1,1]

It is positive if the number of edges within
groups exceeds the expected number

Q greater than 0.3-0.7 means significant
community structure



Another view of Modularity

= Groups of vertices within which connections are
dense, but between which connections are sparser.
= Because we don't have any prior information about network.

Modularity

0-F -, ~X| o~ Zle)] (o

ik J

e;- the fraction of edges in the original network
connecting nodes in community i to those in
community j

Note that the above representation is another
form of modularity presented in the previous slide



Another view of Modularity

Proof

* ¢;; = fraction of all edges that go from community 7 to community j.
* So:

number of edges between communities 7 and j

B.gj —

2m

* a; = total fraction of edges connected to community z:
a; = Z €ij
j

which simply means: add up all fractions of edges going from community 2 to all communities 7 (including

1 itself).



Another view of Modularity

Suppose edges are placed randomly, but the number of edges
touching each community stays the same (this is called a "null model™).

e Community 2 "owns" fraction a; of all edges (half-edges or stubs).
e The probability that one end of a random edge falls into community z = a;.

e The probability that both ends of a random edge fall into community 2 = a; X a; = a?.

e Real fraction of edges inside community 2 = e;;

e Expected fraction (if random) = a.,;z

For community 2, the contribution to modularity is:

And the total modularity () is:



Modularity
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Equivalently modularity can be written as:

1 k.i kj
Q== |4 o—|d(cic;)
2m 2m
t]

« A;; represents the edge weight between nodes % and j;
o k; and k; are the sum of the weights of the edges attached to nodes 7 and j, respectively;
« 2m is the sum of all of the edge weights in the graph;
« ¢; and c¢; are the communities of the nodes; and

« & is an indicator function §(c;,¢;) = 1if ¢; = ¢ else 0

ldea: We can identify communities by
maximizing modularity



Modularity Limitations

Resolution Limit:

Modularity may miss small communities, especially in large sparse
graphs.

It tends to merge small but meaningful groups into larger ones
because that gives a higher modularity score overall.
Degeneracy:

There can be many partitions with similar modularity scores —
especially in sparse networks — making it hard to pick the "best”
community structure.

Random graph bias:

In very sparse graphs, the null model (which assumes random
connection probability based on node degree) may be too weak, so
modularity might find communities even in random noise.



Normalized Mutual
Information (NMI) Metric

%



Entropy

H(X): is called the Entropy of X.
It measures the uncertainty or randomness in the random
variable.

Uncertainty means how much you don't know about the
outcome before it happens.

n information theory, entropy measures uncertainty.
f you are very unsure about what will happen, entropy is
nigh.

f you are very sure (the outcome is predictable), entropy is
OW.




Individual Entropy

sum over the variable's

possible values
Examples: L
Suppose you toss a fair coin: H( X) =_2’p(x.) logP( x )
Heads (H) or Tails (T) / -
Prob Obilitg of Heads = 0.5 Self -information individual probabilities
(information content, of random variables X
Probability of Tails = 0.5 Srprisl. Shaon andis

information)

H(Coin) = —(0.51og, 0.5 + 0.510g, 0.5) =1
Now imagine a trick coin that always lands on Heads.
Heads (H): probability =1
Tails (T): probability =0
H (Broken Coin) = —(1log, 1+ 0log,0) =0

More outcomes — more uncertainty — higher entropu.



Joint Entropy

| particular values
2 random variables of Xand ¥

Xand Y discrete case

H(X.Y) =— D, D, P(x,y)log [P(x.)]

xeEXye Y

joint probability of
values occurring
continuous case together

h(X,Y) =— / f (x,y) logf (x,y) dxdy
.Y



Motivation for Mutual Information

Mutual information measures the information that X and Y
share. It measures how much knowing one of these
variables reduces uncertainty about the other.

If Xand Y are independent:
MI(X,Y)=0

It X'is a deterministic function of Y and Y is a deterministic
function of X then all information conveyed by X is shared
with Y



Mutual Information

H(X)+H(Y) = the uncertainty if we knew nothing about how
X and Y are related (just sum of individual uncertainties).
H(X,Y) = the actual uncertainty when considering X and Y

together.
The difference between these two is the shared information

— that is, Mutual Information.

MI=H(X)+HY) - H(X,Y)



Motivation for Ml

H(Y) < individual

individual — HiX ) / b N entropy

entropy , N
conditional @ conditional
entropy entropy

I(X:Y)<— Mutual Information

- I
H( }(f V) < joint entropy

Sean McClure, 2020

Mutual Information: I( X;Y) =H(X) + H(Y) — H(X,Y)



MI for two Communities

H(Cy4) = —>.; P(i)log P(i)
H(Cp) = —>_; P(j)log P(j)
H(Ca4,Cp) = —>_; >.; P(i,j)log P(i, j)

MI=H(X)+H(Y)-H(X,Y)

MI(C4,Cg) = ( ZP ) log P(1) ZP ) log P(j ) (ZZPE j) log P(i, j))




MI for two Communities
P(i)

— ZP(‘i,j) ZP(i)logP(i) = Y: (Y P(i?j)) log P(1)
— ZZF(i,j)lﬂgP(i)

MI(Cy,Cg) = ZZP@ j)log P(i, ZZPz j)log P(3) ZZsz log P(j
1 e <

MI(C4,Cp) = Z Z P(ijji (log P(i, j) — log P(i) — log P(j)) | log (P};(;’%))

[Ca| |C]

o= 55 i 5

i=1 j=1




Normalized Mutual Information

The Normalized Mutual Information is used to scale Ml
between 0 and 1. It's symmetric and normalized.

2x MI(C4,Cp)

NMI(Cy4,Cp) = H(Cy4) + H(Cp)

P(7) = probability that a sample belongs to cluster i in C'4
P(j) = probability that a sample belongs to cluster j in Cp

P(i,j) = probability that a sample belongs both to cluster 7 in C'4 and cluster j in Cg



Normalized Mutual Information

C4l |Cp ]
f\;’II(CA, CB) _ Z Z P(’i,j) log (P}(:’z(;},:’j()j))

2 X f\sz(CA,OB)

NMI(Ca,Cn) = Fiey+ HCp)

P(7) = probability that a sample belongs to cluster i in C'4
P(j) = probability that a sample belongs to cluster j in Cp

P(i,j) = probability that a sample belongs both to cluster 7 in C'4 and cluster j in Cg



Normalized Mutual Information

N = total number of samples

N;; = number of samples simultaneously in cluster ¢ in C'4 and cluster 7 in Cp

N; = number of samples in cluster 2 in C'g

N j = number of samples in cluster j in Up

N.
P(i) = probability that a sample belongs to cluster i in C'g P(i) = T;
P(j) = probability that a sample belongs to cluster j in Cp P(j) = N
N
P(i, j) = probability that a sample belongs both to cluster 7 in C4 and cluster j in Cg P(i,j) = Ni;



Normalized mutual information

NMl is a probabilistic information theoretical metric that
compares the similarity of two sets of clusters.

230 S N og (57 )
Z'C l|N log( )—FZ'CB'NJIDg(%)

NMI(Cy,Cg) =

Where C4 and Cp are two sets of clusters. Nis a |C4| x |Cg| matrix in which Nij is
equal to the number of common members of ('th cluster of C'y4 and j'th cluster of C'z.
N;., N j, and N are equal to the sum of ('th row, j'th column, and the whole of the
matrix N, respectively. The range of NMI values is between 0 and 1, where NMI of 1

represents the exact matching of two sets, and 0 shows the maximal difference.
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Classification Metric
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Pairwise Fi1-score

PWF: Consider a pair of nodes vand v. These two
nodes can be in same or different community in the
ground truth and the inferred network.

Consider the classification problem where we want to

determine whether nodes vand vare in the same
community or not.

7 He N He

Pwp'r'ec:isir)n, = | ‘
He

4 HG M HG*

PWTE(:H“ — | ‘H’G*| l

2P Wr;m'ecisiunp HII'E(E(I.”

PWF =
P Wp?“f:r:'im'.rrrr. + P Wr'f-if:ﬂ.”
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Graph Partition -based
Metrics
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Conductance

= Graph Conductance: | E(U,V-U)
P(G)=min— 1
U min{d(U),d(V -U)}

. d(U) =;JZUA[LJ'] is weighted degrees of nodes in U
» Consider the normalized stochastic matrix M = D1A, where A is
the adjacency matrix and D the diagonal degrees

= Conductance ¢ is related to the second eigenvalue of the matrix M

= Low conductance means that there is some bottleneck and a
subset of nodes not well connected with the rest of the graph

= High conductance means that the graph is well connected

Communities are likely to have low conductance



Conductance

Graph Conductance:

AG) =M L) v -U)

COND(s) = smrigary = 0-125

_____
-
- ®*a




Clustering

= Given a set of objects V, and a notion of similarity (or
distance) between them, partition the objects into disjoint
sets S4,5,,...,S,, such that objects within each set are
similar, while objects across different sets are dissimilar

= Graph clustering:
= Input: a graph G=(V,E)
edge (u,v) denotes between u and v
weighted graphs: weight of edge captures the degree of similarity

= (Clustering: Partition the nodes in the graph such that nodes
within clusters are well interconnected (high edge weights), and
nodes across clusters are sparsely interconnected (low edge
weights)

= The number of edges between clusters is called cut-size
= most graph partitioning problems are NP hard



The methods

= What property or measure of network is used in this
algorithm or method?

= eigenvalue and eigenvector, spectrum of adjacency matrix (we briefly
discussed this one)

= Edge betweenness, information centrality
= Distance, dissimilarity index, edge clustering coefficient, etc
= Agglomerative or divisive?

= What is the required prior information here?
= Whether there is community or not
= How many communities are there

= Performance of partitioning results and computational
complexity



Measuring connectivity

= What does it mean that a set of nodes are well or
sparsely interconnected?

= : the min number of edges such that when
removed cause the graph to become disconnected
= small min-cut implies sparse connectivity

« minEWU,V-U)=% > Alij]

ieU jeV-U

V-U

* not always a good idea!



Graph Expansion

= Normalize the cut by EI&S:' %iz%)of the smallest component

0= min{Ul,|V - U

O min_EUY-U
0 minjul.lv -ul!




Graph Expansion vs Conductance

Conductance = edges leaking / how many edges are inside

Expansion = edges leaking / how many nodes are inside

Conductance is more careful because it knows that some

nodes are "heavy"” (high degree) and others are "light.*

The expansion does not capture the inter-cluster similarity well
The nodes with high degree are more important
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Girvan-Newman algorithm
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Girvan-Newman

1. Calculate betweenness for all edges in the network
2. Remove the edge with the highest betweenness

3. Recalculate betweenness for all edges affected by
the removal

4. Repeat from step 2 until no edges remain

5. From the resulting dendrogram (the hierarchical
mapping produced by gradually removing these
edges), select the partition that maximizes network
modularity
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Louvain algorithm
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Louvain

Greedy algorithm for community detection
O(nlogn) run time

Supports weighted graphs
Provides hierarchical communities

Network and communities:

Widely utilized to study
large networks because:

Fast
Rapid convergence Dendrogram:

- - ]
High modularity output

(i.e., “better communities”) 54 J> l Il l lilé éli) )\




Louvain

Louvain algorithm greedily maximizes modularity
Each pass is made of 2 phases:

Phase 1: Modularity is optimized by allowing only
local changes to node-communities memberships

Phase 2: The identified communities are aggregated
into super-nodes to build a new network

Goto Phase 1 e

s 5o




Louvain First Phase

Put each node in a graph into a distinct
community (one node per community)

For each node i, the algorithm performs two
calculations:

Compute the modularity delta (AQ) when putting
node i into the community of some neighbor j

Move i to a community of node j that yields the
largest gain in AQ

Phase 1 runs until no movement yields a gain

This first phase stops when a local maxima of the modularity is attained, i.e., when no individual node
move can improve the modularity.
Note that the output of the algorithm depends on the order in which the nodes are considered.

Research indicates that the ordering of the nodes does not have a significant influence on the overall
modiilaritv that is ohtained



Modularity Gain

What is AQ if we move node i to community C?

Zén +A'MH o Zmz +;‘; ’ - Zin — (Zh’r)g o A_[ ]
2m 2m 2m

2m
Zin:

AQ(i — C) =

2m

where:

2Zin... sum of link weights between nodes in C

Yiot-- SUM of all link weights of nodes in C
k; in... sum of link weights between node i and C

Ziot:

k;... sum of all link weights (i.e., degree) of node i w
Also need to derive AQ(D — i) of taking

node i out of community D.
And then: AQ = AQ(i » C) + AQ(D - i)



Modularity Gain

More in detail:

Modularity contribution

after merging node i

2 9 2
. - Zin +l“i.in Ztui +]'! Zin. (Z!o! ) ) A'!'
AQ(l - C) a 2m 2m 2m 2m 2m
\

Y J \ ]
Modularity of C Modularity of /

Self-edge weight

Z?’.n
C Kijin/2 |
By applying the Modularity definition:
Etnt - Z?ﬁn - (k-i,?.'n/z)\ + /k, — (k, ,‘,,-,/2) 1 A k'i k.] 5
Edge weight of the resulting super- \/ Q B 2m Z o 2m (Ci‘ ? Cj)
node from merging C and / rest of the graph t]

(modeled as a single node)



Louvain Second Phase

The communities obtained in the first phase
are contracted into super-nodes, and the
network is created accordingly:

Super-nodes are connected if there is at least one

edge between the nodes of the corresponding
communities

The weight of the edge between the two super-

nodes is the sum of the weights from all edges

between their corresponding communities
Phase 1 is then run on the super-node

network



Louvain Algorithm

Algorithm 1: Sequential Louvain Algorithm

Input: G=(V.E): graph representation.
Output: C: community sets at each level;
Q: modularity at each level.
Var: ¢é: vertex u's best candidate community set.

1 Loop outer 18 // Calculate community set and modularity.
2 C—{{u}}, Yuev ; 19 Q«0;
3 Ejnx—Zu,H.((u\)HE ucc and vec ; 20 for ceC do
4 v vweluv)eE, uecorvec ; 21 Q0«0+ "'7(1;’5)-
» // Phu.w L. 2 C = {c}.YceC : print C_and Q.
. R I » 23 | [/ Phase 2: Rebuild Graph)
7 for ucV and ucec do —
8 // Find the best community for vertex u. " v : ¢ C :]Communities contracted into super-nodes
9 ¢ argmax  AQ . s i| Modularity gain - ET{e(c.c)}, 3e(uv)€E, uec, “f‘f' :
Ve eluvIEE, vee 26 . YWy, Ve(u,v) EE, u€c, vec ;
10 if AQ,,; >0 then 27 lf M) community changes then
11 / Lpdutc X and X H,,, 28 e\lt outer Loop
12 ;_,“,, — Z;“[ +wlu) ; X I” (*g. +Wyé ) 29 V¢ V  E ¢ E . Halting criterion
13 X X, —wlu) s XS Zm Wiess & for 2" Phase
14 / Update the ¢ ummumt\ mformation. | l
15 ¢ cU{u} ; ce—c—{u} ;
16 1l No vertex moves to a new community then the weights of the edges
17 . exit inner Loop: between the new super-nodes

are given by the sum of the
weights of the edges between
vertices in the corresponding
two communities

Halting criterion for 1t Phase




15STPASS
1 ;
s i
A 7
D & \
~eo—%
15\\(1
/8\10/13
9
\ >/
12 14
2\°P PASS
14 4

STEP |

STEP |

Louvain Algorithm

14 4
STEP I 5 3
1 St
- N
O/ 3 U,
16
STEP I
26 2%



Limitations

Resolution limit: hard to detect smaller communities, may
be merged into larger communities

Intermediate steps may have more intuitive structures
Degeneracy problem: exponentially large number of
possible
community assignments with close to maximum
modularity

Hard to find global maximum (NP-hard)

Is the global maximum better, more scientifically important than
other community assignments with similar modularity?

Locally optimal community assignments can have
different structural properties
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Infomap algorithm
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Goal

It we want to understand how network structure relates to system
behavior,

we need to understand the flow of information on the network

A group of nodes among which information flows quickly and easily
can be aggregated as a single well-connected module/community
Succinctly describing information flow is a coding/compression
problem

Use a random walk as a proxy for information flow

Random walk uses all of the information in the network representation and
nothing
Mmore
Finding community structure in networks is equivalent to solving a
coding
problem
Want a compressed description of a random walk, with unique names for
important structures



Attempt 1

Give a unigue name to each node
Derived using a Huffman
encoding, using the estimated
orobability that the random walk
visits that node
Huffman encoding assigns shorter
names to more common nodes
The random walk can be
represented in 314 bits

m“"'-.
1 0110
=

TR okl ""L
/ : \ )/ 1010
01010
~ 0000 i

& GG
10100 U E— 0



Attempt 2

Use a two levels description, retaining uniqgue names
for each module, but use a different Hutffman code
for nodes within each cluster

Start with name of the cluster, then the node names
within the cluster

EXit code is chosen as part of the within-cluster
Huffman coding,

indicating the walk is leaving the current cluster

Exit code is followed by the name of the next cluster




Illustration

P10 CO00 NN OF 1N 160 804 00 SO O 110 018 GO NIE D 1Y 161 1 LET 10
VU0 GO 1D LI N O TET SO 0T NO930 11 IR N1 B0 SN 1901 QI
00 10 000 1171 &0 3 111 1 i1

LAl K- R - GE-REE-RERE -0 RE-B AR 440 1191

PO AT Ol 000 %70 OB €



Map Equation

Look for a module partition M of n nodes into m modules to minimize
the expected description length of a random walk

Average description length is given by the map equation or L
L(M) = q~H(Q) + X%, pi,H(P?)

* First term: Average number of bits necessary to describe movement between

communities
e Second term: Average number of bits necessary to describe movement within

communities
» Exiting is also considered a movement



Map Equation

L

I~ =) in Dt =qin + ) Pa

=1

* Per-step p.robability that the random * Weights the entropy of movements within module i
walker switches modules * p, is the ergodic node visit frequency at node a within
* (;~ is the per-step probability that the the random walk

walker leaves module i

m (1 (];
- 1 F P (i~ (P*) S Op —
H(O) Li""' log | —i> (0 PRI S S ( ke )
\ =~ J \\”; (if = \‘”-’ 1 v Z yBcqa P \ 1 - ra j 1 ;
i 1 Z g\;:l JO W y

7.".4,‘:1’,»' -

« H(Q) is the entropy of movements > P - ; log ( P \ - )
between modules vei ‘ \ 1o “Bei P )

. H(Pi) is the entropy of movements within
module i




Minimizing the Map Equation

Use the same optimization procedure as in the Louvain
algorithm
Start with each node in a different community

Move nodes to neighboring communities for greatest
decrease in L

Aggregate communities
Repeat until L is minimized



Computational complexity is determined by the
procedure used to minimize the map equation
So, it becomes the same as the Louvain algorithm

O(LlogL) or O(N log N) for a sparse network
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Overlapping Communities
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Non-overlapping vs. overlapping communities




Facebook Network

i ®
\\

.
\\

NG )

/
-_ ®
~z. Y/

Nodes: Users

Social communities Edaes: Friendships



Protein-Protein Intraction

Wy ‘-:x ¥ Nodes: Proteins
* i Edges: Interactions



Communtties

o) Nodes

< 0200000000000
Q. (o}
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Network Adjacency matrix

Overlapping
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Step 1)
Define a generative model for graphs that is
based on node community affiliations

Community Affiliation Graph Model (AGM)

Step 2)
Given graph G, make the assumption that G was
generated by AGM
Find the best AGM that could have generated G
And this way we discover communities



Community Affiliation Graph Model (AGM)

Communities, C P4 A

Memberships, M

Nodes, V. @ © © ©

Community Affiliation Network

Generative model: How is a network
generated from community affiliations?
Model parameters:

Nodes V, Communities C, Memberships M
Each community ¢ has a single probability p.



Generative Process

Communities, C  p, . PB

Memberships, M

Nodes,V @ @ © © '

Community Affiliation Network

Given parameters (V, C, M, {p.})

Nodes in community ¢ connect to each other by
flipping a coin with probability p,

Nodes that belong to multiple communities have
multiple coin flips

If they “miss” the first time, they get another chance through the next community

p(u, U) =1 — | | (]. — pc) Note: If nodes u and v have no communities in common,
then p(u,v)=0. We resolve this by having a background
c€EMyNM, “epsilon” community that every node is a member of.



Dense Overlaps




Flexibility

AGM can express a

variety of community A B
structures: A B
Non-overlapping, /I\ /i\
Overlapping, Nested

B A B

A C



Detecting communities with AGM:

Given a Graph, find the model F

1) Affiliation graph M
2) Number of communities C
3) Parameters p,



Graph Fitting

How to estimate model parameters F given a G?
Maximum likelihood estimation
Given real graph G
Find model/parameters F WhICh

e
o .:-’ bl 4 %

-?: := ¥ .-'.-:_-.

-z'i:':’: et & ‘l ::"'

.3 F‘:‘P ;: . f-..'

arg max
I::J:::'I; :'ﬂ-.' ™ ..'

" f :ﬁffe“"'; X

To solve th|s we need to:
Efficiently calculate P(G|F)

Then maximize over F (e.g., using gradient descent)




Graph Likelihood

Given (G and I we calculate likelihood

that /" generated G: P(G|F)
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P(u,v): Edge prob. of edge (u, v)

P(G|F) = 1_[ P(u,v) 1_[ (1 —-P(u,v))

(u,v)eG
Likelihood of edges in the graph
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P(G|F)

(u,v)eG
Likelihood of edges not in the graph

G




AGM Relaxing

“Relax” the AGM: Memberships have strengths

F, ,: The membership strength of node u
to community 4 (F,4 = 0: no membership)

F,,: A row vector of community memberships of
node u



BigCLAM Model

Prob. of nodes u, v linking is proportional to
the strength of shared memberships:

P(u,v) =1—exp(—F, - F))
Given a network G(V, E), we maximize [(F)

[(F) = Z log(1 — exp(—F,F,))) — Z F.F}
(

(w,v)EF Dot product w,v)EZE
This is log-likelihood of network G — total probability of all edges occurring and all non-edges not occurring.
Optimization:

Start with random F

Update F,, for node u while fixing the
memberships of all other nodes

Updating takes linear time in the degree of u



BigCLAM Model

Gradient ascent:

VIF) = Y Fo exp(—Fuky ) - Y R

_ T
1 — exp(—F, F} AN e

Perform gradient ascent, where we make small
changes to F that lead to increase in log-likelihood

Pure gradient ascent is slow! However:

»  F, = ZF ~F.— Y F)
vEN (u) vEN (u)

By caching F,, the gradient step takes linear time in the
degree of u
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OSLOM algorithm
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Individual cluster
cleaning-up

Check unions and similar
modules
Cover (1, 2 ... n)
realization i

[ MC result: final cover ]

_ https://arxiv.org/pdf/1012.2363

loop over
hierarchical levels




Any Question?
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Social and Economic Networks

Maryam Ramezani
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