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 Given a network: What are the “communities”?
▪ Closely connected groups of nodes
▪ Relatively few edges to outside the community

 Similar to clustering in datasets
▪ Group together points that are more  close or similar to

 each other than other points
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 Intra-community links that connect nodes in the same community. 
These nodes interact frequently; therefore, these links are known as 
strong ties. The nodes that only have links to other nodes in their 
community are called core nodes. The core nodes tend to influence 
their cohorts in a community more than other network members.

 Inter-community links which connect nodes of different 
communities. Due to low interactions between such nodes, they are 
called weak ties. Nodes that have at least one inter-community link 
are called boundary nodes. Such nodes play an important role in 
information dissemination over different communities.
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Applications in 
Various Fields
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 Networks representing user interactions or system 
communications can be monitored for unusual 
community behavior that might indicate a security 
breach or coordinated attack.
▪ Intrusion Detection: By establishing baseline community 

structures in a network, deviations can flag potential 
intrusions.

▪ Fraud Detection: In financial transactions, community 
detection can uncover suspicious clusters of activity that 
diverge from normative behavior, hinting at fraudulent 
networks.
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• Marketing and Influence Analysis: Brands can target 
influential communities within social media networks to 
optimize advertising campaigns.

• Epidemiological Studies: Understanding how individuals 
are grouped can help trace the spread of diseases or 
misinformation, supporting public health initiatives.

• Gene Regulatory Networks: Identifying communities 
within complex gene interaction networks can shed light 
on co-expressed gene clusters, aiding in understanding of 
genetic conditions.
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Modularity Metric
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▪ Null Model Configuration is a multigraph which means we 
can have more than one edge between each pairs of nodes.

▪ Probability that an edge from i connects directly to one 
possible side of node j because there are 2m−1 possible 
choices (after picking one edge already): 

𝑘𝑗

2𝑚−1

▪ If m is large, then 2𝑚 − 1 ≈ 2𝑚

▪ Number of "opportunities“ of node i: 𝑘𝑖 .
𝑘𝑗

2𝑚

▪ Expected number of successes=number of trials×success probability 
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 Proof
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 Suppose edges are placed randomly, but the number of edges 
touching each community stays the same (this is called a "null model").
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 Resolution Limit:
▪ Modularity may miss small communities, especially in large sparse 

graphs.
▪ It tends to merge small but meaningful groups into larger ones 

because that gives a higher modularity score overall.
 Degeneracy:

▪ There can be many partitions with similar modularity scores — 
especially in sparse networks — making it hard to pick the "best" 
community structure.

 Random graph bias:
▪ In very sparse graphs, the null model (which assumes random 

connection probability based on node degree) may be too weak, so 
modularity might find communities even in random noise.



Normalized Mutual
Information (NMI) Metric
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 𝐻 𝑋 : is called the Entropy of X.
 It measures the uncertainty or randomness in the random 

variable.
▪ Uncertainty means how much you don't know about the 

outcome before it happens.
▪ In information theory, entropy measures uncertainty.
▪ If you are very unsure about what will happen, entropy is 

high.
▪ If you are very sure (the outcome is predictable), entropy is 

low.
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Examples:
 Suppose you toss a fair coin:

▪ Heads (H) or Tails (T)
▪ Probability of Heads = 0.5
▪ Probability of Tails = 0.5

 Now imagine a trick coin that always lands on Heads.
▪ Heads (H): probability = 1
▪ Tails (T): probability = 0

        More outcomes → more uncertainty → higher entropy.
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 Mutual information measures the information that X and Y 
share. It measures how much knowing one of these 
variables reduces uncertainty about the other.
▪ If X and Y are independent:

▪ MI(X,Y)=0

▪ If X is a deterministic function of Y and Y is a deterministic 
function of X then all information conveyed by X is shared 
with Y
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 H(X)+H(Y) = the uncertainty if we knew nothing about how 
X and Y are related (just sum of individual uncertainties).

 H(X,Y) = the actual uncertainty when considering X and Y 
together.

 The difference between these two is the shared information 
— that is, Mutual Information.
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 The Normalized Mutual Information is used to scale MI 
between 0 and 1. It's symmetric and normalized.
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 NMI is a probabilistic information theoretical metric that 
compares the similarity of two sets of clusters. 



Classification Metric
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 PWF: Consider a pair of nodes u and v. These two 
nodes can be in same or different community in the 
ground truth and the inferred network. 
▪ Consider the classification problem where we want to 

determine whether nodes u and v are in the same 
community or not. 
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Graph Partition -based 
Metrics
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 . 

 Communities are likely to have low conductance 
Maryam Ramezani Social and Economic Networks 47



Maryam Ramezani Social and Economic Networks 48



Maryam Ramezani Social and Economic Networks 49



Maryam Ramezani Social and Economic Networks 50



Maryam Ramezani Social and Economic Networks 51



Maryam Ramezani Social and Economic Networks 52

Conductance is more careful because it knows that some nodes are "heavy" (high degree) and others are "light."



 Conductance = edges leaking / how many edges are inside 
 Expansion = edges leaking / how many nodes are inside 
 Conductance is more careful because it knows that some 

nodes are "heavy" (high degree) and others are "light.“
 The expansion does not capture the inter-cluster similarity well

▪ The nodes with high degree are more important
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Conductance is more careful because it knows that some nodes are "heavy" (high degree) and others are "light."



Girvan-Newman algorithm
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 1. Calculate betweenness for all edges in the network
 2. Remove the edge with the highest betweenness
 3. Recalculate betweenness for all edges affected by 

the removal
 4. Repeat from step 2 until no edges remain
 5. From the resulting dendrogram (the hierarchical 

mapping produced by gradually removing these 
edges), select the partition that maximizes network 
modularity
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Louvain algorithm
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 Resolution limit: hard to detect smaller communities, may 
be merged into larger communities
▪ Intermediate steps may have more intuitive structures

 Degeneracy problem: exponentially large number of 
possible

 community assignments with close to maximum 
modularity
▪ Hard to find global maximum (NP-hard)
▪ Is the global maximum better, more scientifically important than 

other community assignments with similar modularity?
 Locally optimal community assignments can have 

different structural properties
Maryam Ramezani Social and Economic Networks 65



Infomap algorithm
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 If we want to understand how network structure relates to system 
behavior,

 we need to understand the flow of information on the network
 A group of nodes among which information flows quickly and easily 

can be aggregated as a single well-connected module/community
 Succinctly describing information flow is a coding/compression 

problem
 Use a random walk as a proxy for information flow

▪ Random walk uses all of the information in the network representation and 
nothing

 more
 Finding community structure in networks is equivalent to solving a 

coding
 problem

▪ Want a compressed description of a random walk, with unique names for 
important structures
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 Give a unique name to each node
 Derived using a Huffman 

encoding, using the estimated 
probability that the random walk 
visits that node
▪ Huffman encoding assigns shorter 

names to more common nodes
 The random walk can be 

represented in 314 bits
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 Use a two levels description, retaining unique names 
for each module, but use a different Huffman code 
for nodes within each cluster

  Start with name of the cluster, then the node names 
within the cluster

 Exit code is chosen as part of the within-cluster 
Huffman coding,

 indicating the walk is leaving the current cluster
▪ Exit code is followed by the name of the next cluster
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 Use the same optimization procedure as in the Louvain 
algorithm
▪ Start with each node in a different community
▪ Move nodes to neighboring communities for greatest 

decrease in L
▪ Aggregate communities
▪ Repeat until L is minimized
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 Computational complexity is determined by the 
procedure used to minimize the map equation

 So, it becomes the same as the Louvain algorithm
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Overlapping Communities
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BigCLAM
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OSLOM algorithm
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https://arxiv.org/pdf/1012.2363



Any Question?
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